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Abstract	

	 UV-Vis	spectroscopy	was	used	to	determine	the	energy	of	transition,	∆𝐸,	from	the	highest	

occupied	molecular	orbital	(HOMO)	to	the	lowest	unoccupied	molecular	orbital	(LUMO)	of	several	

cationic	dyes.	Each	dye	contains	a	conjugated,	hydrocarbon	π	system	with	nitrogens	at	each	end,	which	

act	as	potential	barriers	for	the	π	electrons	in	these	systems.	In	this	experiment,	we	have	treated	each	

dye	as	a	one-dimensional	“particle	in	a	box”	in	order	to	simplify	the	calculation	of	∆𝐸.	We	also	derive	eq.	

12	and	13	from	this	model	in	order	to	predict	l#$%,	which	we	compared	with	experimental	data.	Our	

initial	approximation	of	l#$%	(eq.	12)	was	poor,	with	~20%	error	on	average,	but	when	a	variable	

parameter,	α,	was	added,	calculations	were	quite	accurate,	with	<	5%	error.	The	calculated	value	for	α	

was	0.682543.	Gaussian	was	also	used	to	predict	l#$%,	also	with	large	error,	~20%.	However,	

experimental	data	for	l#$%	was	quite	accurate,	with	<	1%	error	compared	to	literature	values.		

I. Introduction	

	 Our	understanding	of	the	behaviour	of	electrons	owes	itself	to	quantum	mechanics.	Quantum	

mechanics	reveals	that	particles	exhibit	wave-like	properties	on	the	atomic	scale,	and	thus,	exist	in	

discrete	states	with	characteristic	energy	levels.	Since	the	amount	of	energy	an	electron	can	have	in	

non-continuous,	it	follows	that	an	electron	can	only	gain	or	lose	an	amount	of	energy	exactly	equal	to	

the	difference	in	energy	between	its	current	state	and	another	discrete	state.	It	is	known	that	electrons	

gain	or	lose	energy	in	the	form	of	electromagnetic	radiation,	which	of	course	always	has	a	characteristic	

wavelength.	The	electronic	transitions	which	occur	between	atomic	and	also	complex	molecular	orbitals	



can	be	observed	by	exploiting	this	fact.	The	lowest	energy	transition	of	electrons	in	a	molecule	is	

typically	the	transition	between	the	HOMO	(highest	occupied	molecular	orbital)	and	the	LUMO	(lowest	

unoccupied	molecular	orbital).	The	relationship	between	the	difference	in	energy	between	two	

electronic	states	and	the	corresponding	wavelength	of	electromagnetic	radiation	is4	

   DE	=	()
l
	 	 	 	 	 	 	 (1)	

where	DE,	h,	c,	and	l	represent	the	change	in	energy,	Planck’s	constant,	and	the	speed	and	wavelength	

of	the	electromagnetic	radiation,	respectively.	It	is	clear	from	eq.	1	that	lower	energy	transitions	in	a	

molecule	correspond	to	longer	wavelengths.	When	these	energetic	differences	are	less	than	about	70	

kcal/mol,	visible	light	(electromagnetic	radiation	in	the	range	of	~ 380-760	nm)	is	emitted/absorbed.	

Molecules	with	conspicuous	color	tend	to	be	ones	with	highly	conjugated	p-systems.	Four	examples	of	

such	molecules,	cationic	dyes	with	extended	p-systems,	were	studied	in	this	experiment.	

	

	 	 	 Figure	1.	Structures	and	names	of	dyes	studied	

	

	 The	states	of	electrons	and	their	corresponding	energies	can	also	be	described	by	the	non-

relativistic	(time-independent)	Schrödinger	equation4	
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∇/ + 𝑉 𝑟 𝛹(𝑟) = 𝐸𝛹(𝑟)	 	 	 	 	 	 (2)	

	

where	m	is	the	mass	of	the	electron,	∇/	is	the	Laplacian	operator,	V(r)	is	the	position-dependent	

potential	operator,	E	is	the	energy	of	the	electron,	and	𝛹(𝑟)	is	the	wave	function	(where	r	represents	

the	position	coordinates).	When	no	potential	is	acting	upon	the	electron	(or	if	it	is	negligible),	eq.	2	

reduces	to	

	 	 − (+

,-+#
∇/ 𝛹(𝑟) = 𝐸𝛹(𝑟)	 	 	 	 	 	 (3)	

Such	is	the	case	for	a	“particle	in	a	box,”	or	a	particle	which	is	confined	to	an	area	of	zero	(or	constant)	

potential	by	infinite	potential	“walls.”	In	fact,	the	wave	function	for	a	one-dimensional	particle	in	a	box	

is	

	 	 𝛹 𝑥 = 	 /
8
	sin <-%

8
	 	 	 	 	 	 	 (4)	

where	L	is	the	“length”	of	the	box,	or	the	length	of	the	space	to	which	the	particle	is	confined.	In	highly	

conjugated	p-systems,	such	as	those	in	the	molecules	shown	in	figure	1,	molecules	can	be	thought	of	as	

essentially	planar,	with	all	p orbitals	parallel	to	one	another	and	with	p electrons	moving	freely	within	

this p system,	according	to	Erich	Hückel.	This	“free-electron”	model3,	although	an	approximation,	is	

quite	simple	as	well	as	accurate	when	compared	to	experimental	results.	Analysis	of	the	molecular	

orbitals	of	the	molecules	shown	in	figure	1	would	be	otherwise	quite	complex,	and	indeed,	computer	

software	can	also	be	used	for	this	analysis.	

	 If	the	“free	electron”	model	is	to	be	used	to	analyze	the	dyes	shown	in	figure	1,	the	benzene	

rings	are	ignored	and	the	p system	is	thought	to	consist	of	one	p-orbital	for	each	of	the	two	nitrogen	

atoms,	plus	one	for	each	carbon	atom	in	the	chain	connecting	them.	It	is	also	assumed	that	potential	

energy	remains	constant	everywhere	along	this	chain,	and	that	the	potential	essentially	reaches	infinity	



just	beyond	the	nitrogen	atoms.	The	“particles”	in	this	particle	in	a	box	model	are,	of	course,	the	

p electrons	of	this	conjugated	system,	and	solving	eq.	3	(an	eigenvalue	equation)	by	substituting	eq.	4	

(an	appropriate	eigenfunction	for	eq.	3)	we	can	obtain	their	energy	levels	(the	eigenvalues	of	this	

eigenfunction):	

	 	 	 𝐸< = 	
(+<+

,#8+
		 	 	 	 	 (5)	

where	n	is	any	integer	>	0.	According	to	the	Pauli	exclusion	principal,	the	number	of	electrons	which	

occupy	any	given	energy	level	cannot	exceed	two,	which	therefore	means	that	the	ground	state	of	any	

molecule	with	N	p electrons	will	have	=
/
	filled	energy	levels	if	N	is	even,	and	=>?

/
	filled	levels	if	N	is	odd.	

The	n-value	which	corresponds	to	the	HOMO	would	be		

𝑛ABCB = 	

𝑁
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and	the	n-value	which	corresponds	to	the	LUMO	would	be	

𝑛8NCB = 	

𝑁 + 2
2
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DE	for	the	lowest	energy	electronic	transition	is	that	of	a	transition	between	the	HOMO	and	LUMO,	and	
is	equal	to 
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For	the	cationic	dyes	studied	in	this	experiment,	there	are	three	p electrons	from	the	two	nitrogen	

atoms,	and	one	p electron	for	every	carbon	atom	in	the	chain	connecting	them.	If	we	let	p	=	the	number	

of	carbon	atoms	in	the	p system	of	each	dye,	it	follows	that	N	=	p	+	3.	Since	the	number	of	carbon	atoms	

in	the	chain	of	each	dye	is	odd,	N	will	always	be	odd,	since	N	=	p	+	3	and	p	is	always	an	odd	number.	

Thus,	eq.	8	reduces	to	

	

	 	 ∆𝐸 = (+

,#8+
𝑛8NCB/ −	𝑛ABCB/ = (+

,#8+
𝑁 + 1 	 	 	 	 (9)	

	

	 In	this	experiment,	the	lowest-energy	electronic	transition	of	each	dye	pictured	in	figure	1	was	

analyzed	using	UV-Vis	spectroscopy.	Since	this	transition	in	these	dyes	occurs	upon	absorption	of	

electromagnetic	radiation	in	the	visible	light	region,	the	most	prominent	absorbance	band	for	each	

molecule	should	be	between	380	and	760	nm.	If	we	substitute	eq.	1	into	eq.	9	and	solve	for	l,	we	have	

	 	 	 l#$% 	= 	
,#)8+

((=>?)
	 	 	 	 	 (10)	

where	l#$%	is	the	wavelength	of	maximum	absorbance,	since	a	Boltzmann5	distribution	predicts	that	

the	wavelength	of	maximum	absorbance	will	be	that	of	the	lowest	energy	electronic	transition	(that	

which	occurs	between	the	HOMO	and	LUMO).	L	for	each	dye	is	estimated	to	be	the	sum	of	the	length	of	

the	carbon	chain	between	the	nitrogen	atoms	and	one	bond	length	on	each	side.	Since	the	number	of	

bonds	between	each	nitrogen	atom	is	p	+	1,	if	each	bond	length	is	estimated	to	be	approximately	the	

same	(due	to	conjugation),	say,	a	length	l,	then	L	=	(p	+	3)l.	If	we	substitute	this	into	eq.	10	and	use	the	

fact	that	N	=	p	+	3,	we	have	

	 	 	 l#$% 	= 	
,#)X+	 Y>Q +

( Y>P
	 	 	 	 (11)	



If	we	predict	that	l	is	approximately	equal	to	the	bond	length	observed	in	benzene	(1.39	Å),	and	

substitute	the	mass	of	an	electron,	the	speed	of	light,	and	Planck’s	constant,	we	can	say	that		

	 	 	 l#$% = 63.7 Y>Q +

Y>P
	 	 	 	 (12)	

approximately,	where	l#$%	is	in	nanometers.	Since	it	is	more	likely	that	the	potential	at	each	end	of	the	

chain	rises	gradually	rather	than	jumping	to	infinity,	we	can	add	a	variable	parameter,	α,	to	L	to	account	

for	this	additional	length	(this	will	also	help	make	the	approximation	of	the	bond	lengths	in	the	chain	

more	appropriate,	since	they	may	not	be	exactly	1.39	Å)	by	saying	instead	that	L	=	(p + 3 + α)l.	Thus,	eq.	

12	becomes	

   l#$% = 63.7 Y>Q>] +

Y>P
		 	 	 	 (13)	

where	α	should	remain	constant	for	this	series	of	molecules	(the	only	difference	between	each	molecule	

is	the	length	of	the	internitrogenous	carbon	chain).	In	this	experiment,	calculations	of	l#$%	using	eq.	13	

were	compared	to	experimental	observations	of	l#$%	for	each	dye	in	order	to	optimize	α.		

	 Additionally,	the	computer	program,	Gaussian,	was	used	to	predict	the	lowest-energy	

conformation	of	each	structure	shown	in	figure	1,	and	then	to	calculate	the	energy	of	the	HOMO	and	

LUMO	of	each	dye	(which	can	be	used	to	estimate	l#$%).	These	results	were	also	compared	to	

experimental	data.		

	

II. Experimental	method	

	 Part	1.	An	Ocean	Optics	Spectrometer	was	used	to	obtain	UV-Vis	spectra	of	each	cationic	dye	

shown	in	figure	1.	Methanolic	solutions	of	each	dye	were	created,	and	concentrations	were	adjusted	

until	absorbance	bands	had	maximum	intensities	just	below	1	(all	concentrations	were	on	the	order	of	



micromolar).	The	absorbance	data	for	each	dye	was	recorded	and	plotted	in	Microsoft	Excel.	This	data	

was	used	to	determine	l#$%	for	each	dye.	

	 Part	2.	Eq.	13	was	used,	with	a	starting	value	of	1	for	α,	in	order	to	obtain	theoretical	values	for	

l#$%	for	each	dye.	In	Microsoft	Excel,	the	Solver	add-in	was	used	to	optimize	α;	α	was	allowed	to	

vary	until	the	minimum	value	for	the	sum	of	the	difference	of	squares	of	each	theoretical	and	

experimental	l#$%	was	obtained.	

	 Part	3.	The	computer	program,	Gaussian,	was	used	to	calculate	l#$%	for	each	dye	shown	

in	figure	1.	First,	semi-empirical	AM1	geometry	optimizations	for	each	dye	were	performed	

(hydrogen	atoms	were	substituted	for	the	ethyl	groups	attached	to	nitrogen	in	each	dye	when	

constructing	each	molecule).	Next,	more	rigorous	geometrical	optimization	was	performed	at	the	

HF/3-21G	level.	The	output	of	these	geometric	optimizations	were	used	in	order	to	perform	single-

point	calculations	at	the	DFT/3-21G	and	DFT/6-31+	level.	The	MO	editor	in	Gaussian	was	used	in	

order	to	obtain	the	energy	of	the	HOMOs	and	LUMOs	of	each	dye	for	each	calculation	method.	

	 Once	Gaussian	was	used	to	determine	the	energy	of	the	HOMO	and	LUMO	of	each	dye,	∆𝐸	was	

calculated	in	order	to	obtain	a	theoretical	value	for	l#$%,	using	eq.	1	(where	eq.	1	was	rearranged	to	

solve	for	l#$%).	This	was	done	for	the	results	of	both	the	DFT/3-21G	and	DFT/6-31G+	methods	of	

single	point	calculation.		

III. 	Results		

	 First,	an	Ocean	Optics	Spectrometer	was	used	to	obtain	UV-Vis	spectra	of	each	cationic	dye	

shown	in	figure	1.	Methanolic	solutions	of	each	dye	were	created,	and	concentrations	were	adjusted	



until	absorbance	bands	had	maximum	intensities	just	below	1.	These	spectra	can	be	viewed	in	figure	2.	

	

Figure	2.	Absorbance	spectra	of	methanolic	solutions	of	DTC,	DTCC,	DTDC,	and	DTTC	with	concentrations	of	4.3	µM,	

3.2	µM,	3.9	µM,	and	5.1	µM,	respectively,	obtained	using	an	Ocean	Optics	spectrometer.	

	

	 To	determine	l#$%	for	each	dye,	absorption	data	was	copied	into	Microsoft	Excel.	Absorbance	

values	for	each	dye	were	sorted	greatest-to-least	by	Excel,	and	the	corresponding	wavelengths	were	

recorded.	The	values	obtained	for	l#$%	for	each	dye	can	be	viewed	in	table	1.	
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Dye	molecule	 Concentration	(µM)	 𝐴#$%	 l#$%	(nm)	

DTC	 4.3	 0.619	 422.9	

DTCC	 3.2	 0.703	 556.6	

DTDC	 3.9	 0.613	 651.5	

DTTC	 5.1	 0.949	 758.5	

Table	1.	Concentration	of	methanolic	solutions	of	DTC,	DTCC,	DTDC,	and	DTTC	(in	µM),	their	maximum	absorbances	

(𝐴#$%),	and	wavelength	at	𝐴#$%	(l#$%,	in	nanometers).	

	 	 Next,	eq.	13	was	used,	with	a	starting	value	of	1	for	α,	in	order	to	obtain	theoretical	

values	for	l#$%	for	each	dye.	Values	of	p	used	for	DTC,	DTCC,	DTDC,	and	DTTC	were	3,	5,	7,	and	9,	

respectively.	In	Microsoft	Excel,	the	Solver	add-in	was	used	to	optimize	α.	This	was	done	by	allowing	α	

to	vary	until	the	minimum	value	for	the	sum	of	the	difference	of	squares	of	each	theoretical	and	

experimental	l#$%	was	obtained.	The	results	of	this	optimization	can	be	viewed	in	table	2.	

Dye	molecule	 p	 l_%Y_`a#_<b$c 	(nm)	 l)$c)dc$b_e 	(nm)	 (lfghil)$c))/	

DTC	 3	 422.9	
	

406.3731	
	

273.1396	
	

DTCC	 5	 556.6	
	

533.5693	
	

530.4146	
	

DTDC	 7	 651.5	
	

660.8396	
	

87.22772	
	

DTTC	 9	 758.5	
	

788.1498	
	

879.1102	
	

																									
Total:	

	
1769.892	

																α:	 0.682543	

Table	2.	The	results	of	optimization	of	α	using	Solver	in	Microsoft	Excel.	Table	shows	experimental	values	for	

l#$%	for	each	dye,	values	for	l#$%	calculated	using	eq.	13	while	allowing	α	to	vary	for	each	dye,	the	difference	of	

squares	of	these	values,	the	sum	of	these	differences	of	squares,	and	the	resulting	optimized	value	for	α.		

	



Predictions	for	the	value	of	l#$%	were	also	calculated	without	the	variable	parameter	α,	shown	in	

table	2-a,	and	an	example	of	this	calculation	can	be	viewed	in	figure	3.	

	

DTC:	 	 p	=	3	

	 (12)	 l#$% = 63.7 Y>Q +

Y>P
	=	63.7 Q>Q +

Q>P
	=	(63.7	𝑛𝑚) Qk

l
	=	327.6	nm	

Figure	3.	Sample	calculation	of	l#$%	using	eq.	12.	

	

Dye	molecule	 l#$%	(nm)	

DTC	 327.6	

DTCC	 453.0	

DTDC	 579.1	

DTTC	 705.6	

Table	2-a.	Theoretical	values	for	l#$%	calculated	using	eq.	12	(without	α),	in	nanometers.	

	

	 The	computer	program,	Gaussian,	was	also	used	to	calculate	l#$%	for	each	dye	shown	in	

figure	1.	First,	semi-empirical	AM1	geometry	optimizations	for	each	dye	were	performed	(hydrogen	

atoms	were	substituted	for	the	ethyl	groups	attached	to	nitrogen	in	each	dye	when	constructing	each	

molecule).	Next,	more	rigorous	geometrical	optimization	was	performed	at	the	HF/3-21G	level.	The	

output	of	these	geometric	optimizations	were	used	in	order	to	perform	single-point	calculations	at	the	

DFT/3-21G	and	DFT/6-31+	level.	The	MO	editor	in	Gaussian	was	used	in	order	to	obtain	the	energy	of	

the	HOMOs	and	LUMOs	of	each	dye	for	each	calculation	method.	The	results	of	these	calculations	can	

be	viewed	in	table	3.	

	



	

	 DFT/3-21G:	 	 DFT/6-31G+:	 	

	 𝐸ABCB	(H)	 𝐸8NCB	(H)	 𝐸ABCB	(H)	 𝐸8NCB	(H)	

DTC	 -0.33134	 -0.19399	 -0.32881	 -0.19311	

DTCC	 -0.30352	 -0.20108	 -0.30140	 -0.20011	

DTDC	 -0.28650	 -0.19870	 -0.28448	 -0.19744	

DTTC	 -0.27325	 -0.19631	 -0.27125	 -0.19487	

Table	3.	Values	obtained	for	the	energy	of	the	HOMOs	and	LUMOs	of	DTC,	DTCC,	DTDC,	and	DTTC	using	DFT/3-21G	

and	DFT/6-31G+	single	point	calculations,	in	Hartrees	(H).	

	 The	MO	editor	in	Gaussian	was	also	used	to	visualize	the	HOMOs	and	LUMOs	of	each	dye.	

Samples	of	these	visualizations	are	shown	in	figures	4	–	7.	

	

Figure	4.	Visualization	of	the	HOMO	of	DTC	using	DFT/6-31G+	single	point	calculation	in	Gaussian.	Initial	geometric	

optimization	using	AM1	can	also	be	seen	(the	structure	was	estimated	to	be	completely	planar).	Opposite	phases	

are	represented	by	green	and	red,	sulfur	is	represented	by	yellow	tube,	and	nitrogen	is	represented	by	a	blue	tube.	

The	remaining	tube	structure	(in	grey)	represents	the	remaining	carbon	“frame”	of	the	molecule.		



	

Figure	5.	Visualization	of	the	LUMO	of	DTC,	also	using	DFT/6-31G+	single	point	calculation	in	Gaussian	

(representation	is	similar	to	that	of	figure	4).	

	

Figure	6.	Visualization	of	the	HOMO	of	DTTC,	using	DFT/3-21G	single	point	calculation	in	Gaussian	(representation	

is	similar	to	that	of	figures	4	and	5).	



	

Figure	7.	Visualization	of	the	LUMO	of	DTTC,	using	DFT/3-21G	single	point	calculation	in	Gaussian	(representation	

is	similar	to	that	of	figures	4,	5,	and	6).	

	 Once	Gaussian	was	used	to	determine	the	energy	of	the	HOMO	and	LUMO	of	each	dye	(table	3),	

the	difference	in	energy	between	the	HOMO	and	LUMO	of	each	dye	was	calculated	in	order	to	obtain	a	

theoretical	value	for	l#$%,	using	eq.	1	(where	eq.	1	was	rearranged	to	solve	for	l#$%).	This	was	done	

for	the	results	of	both	the	DFT/3-21G	and	DFT/6-31G+	methods	of	single	point	calculation.	Since	

Gaussian	yields	energy	values	in	units	of	Hartrees,	these	values	were	converted	to	Joules	before	using	

eq.	1.	An	example	of	this	calculation	can	be	viewed	in	figure	8	and	the	results	of	these	calculations	can	

be	viewed	in	table	4.		

DTC,	DFT/3-21G:		 DE	=	𝐸8NCB	-	𝐸ABCB	=	-0.19399	H	+	0.33134	H	=	0.13735	H	

	 	 	 0.13735	H	x	P.QSR,	%	?m
nopq

?	A
	=	5.998	x	10i?R𝐽	

	 	 (1)	 l#$%	=	
()
∆t
	=	 k.k/k	%	?m

nuvq∗x 	 /.RR,	%	?moy			<# x
S.RR,	%	?mnoz		q

	=	331.7	nm	

Figure	8.	Calculation	of	l#$%	of	DTC	using	eq.	1	and	DFT/3-21G	energy	calculations	from	Gaussian	(see	table	3).	

	



	 DFT/3-21G:	 	 DFT/6-31G+:	 	

	 ∆𝐸	(H)	 l#$%	(nm)	 ∆𝐸	(H)	 l#$%	(nm)	

DTC	 0.13735	 331.7	 0.13570	 335.8	

DTCC	 0.10244	 444.8	 0.10129	 449.8	

DTDC	 0.08780	 518.9	 0.08704	 523.5	

DTTC	 0.07694	 592.2	 0.07638	 596.5	

Table	4.	Calculated	values	for	∆𝐸	and	theoretical	values	for	l#$%	using	results	of	table	3	and	the	calculations	

shown	in	figure	8.	

	 Finally,	values	obtained	for	l#$%	using	eq.	12,	eq.	13,	and	Gaussian	were	compared	to	

experimental	values	(table	1).	Percent	errors	in	theoretical	values	were	obtained	using	the	sample	

calculation	shown	in	figure	9	and	the	results	of	these	calculations	can	be	viewed	in	table	5.	

	 l𝒎𝒂𝒙	for	DTC	using	Gaussian,	DFT/6-31G+	single	point	calculation:	335.8	nm	

	 Experimental	l𝒎𝒂𝒙	for	DTC:	422.9	nm	

	 	 %	error	=	
l𝒕𝒉𝒆𝒐𝒓𝒆𝒕𝒊𝒄𝒂𝒍i	l𝒆𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕𝒂𝒍

l𝒆𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕𝒂𝒍
	x	100%	=	-2.06%	

Figure	9.	Sample	calculation	of	percent	error	for	the	theoretical	calculation	of	l#$%	for	DTC	using	Gaussian	DFT/6-

31G+	single	point	calculation.	

%	error	in	
calculations	using:	

Free	electron	
approximation	

	 Gaussian	single	
point	calculation	

	

	 without	α	
(eq.	12)	

with	α		
(eq.	13)	

DFT/3-21G	
method	

DFT/6-31+	
method	

DTC	 -22.5	 -3.9	 -21.6	 -20.6	

DTCC	 -18.6	 -4.1	 -20.1	 -19.2	

DTDC	 -11.1	 +1.4	 -20.4	 -19.6	

DTTC	 -7.0	 +3.9	 -21.9	 -21.4	

Table	5.	Percent	error	of	theoretical	values	obtained	for	l#$%	using	eq.	12,	eq.	13,	Gaussian	DFT/3-21G,	and	

Gaussian	DFT/6-31G+	as	compared	to	experimental	values.	



	

	 Literature	values	for	l#$%	were	also	used	to	calculate	percent	error	in	experimental	and	

theoretical	data	obtained.	These	results,	as	well	as	the	literature	values1	for	l#$%	of	each	dye,	are	

shown	in	table	5-a.	

	

%	error	in	
calculations	
using:	

Free	electron	
approximation	

	 Gaussian	
single	point	
calculation	

	 	 	

	 without	α	
(eq.	12)	

with	α		
(eq.	13)	

DFT/3-21G	
method	

DFT/6-31+	
method	

Experimental	
data	

Literature	
values1	
for	l#$%	
(nm)	

DTC	 -22.7	 -4.2	 -21.8	 -20.8	 																-0.3	 424	
DTCC	 -19.1	 -4.7	 -20.6	 -19.7	 -0.6	 560	
DTDC	 -11.6	 +0.9	 -20.8	 -20.1	 -0.5	 655	
DTTC	 -7.8	 +3.0	 -22.6	 -22	 -0.8	 765	

Table	5-a.	Literature	values	for	l#$%	of	each	dye,	and	percent	deviation	from	these	values	of	the	experimental	

data,	free	electron	approximations,	and	Gaussian	calculations.	

	

IV. Discussion	

	 It	would	seem	from	the	given	literature	values	for	DTC,	DTCC,	DTDC,	and	DTTC	that	the	

experimental	data	is	quite	accurate	(the	absolute	value	of	the	percent	deviation	of	each	is	less	than	1%).	

It	would	also	seem	that	approximations	using	eq.	13	are	also	quite	accurate	(the	absolute	value	of	the	

percent	deviation	of	each	is	less	than	5%).	However,	all	other	approximations,	especially	those	using	

Gaussian,	seem	to	be	quite	inaccurate	(the	absolute	value	of	the	percent	deviation	of	each	is	greater	

than	5%,	and	in	fact,	often	exceeds	20%,	which	is	quite	high).	In	general,	almost	all	approximations	are	

underestimations	of	l#$%,	with	only	two	exceptions	(both	of	which	are	approximations	using	eq.	13).		

	 Considering	the	fact	that	the	entire	electromagnetic	spectrum	spans	twenty-four	orders	of	

magnitude,	that	the	visible	light	spectrum	is	hardly	one	order	of	magnitude	in	size,	and	that	the	

approximations	using	Gaussian	and	eq.	12	estimate	l#$%	to	be	somewhere	in	the	range	of	visible	light,	



these	methods	actually	seem	quite	impressive.	However,	there	are	obvious	flaws	in	these	

approximations.	In	the	approximation	of	l#$%	using	eq.	12,	it	is	assumed	that	the	bond	length	between	

all	atoms	in	the	internitrogenous	chain	of	each	dye	molecule	is	precisely	that	of	carbon-carbon	bonds	in	

benzene	(1.39	Å),	and	that	there	is	precisely	one	bond	length	of	this	length	on	either	side	of	each	

nitrogen	before	the	potential	of	the	molecule	reaches	infinity.	In	reality,	despite	the	fact	that	this	region	

of	each	molecule	is	conjugated,	it	is	not	known	if	these	bond	lengths	are	precisely	1.39	Å	(but	eq.	12	

assumes	that	this	is	so).	Also,	it	is	much	more	likely	that	instead	of	there	being	an	infinite	potential	

“wall”	on	either	side	of	each	nitrogen,	the	potential	most	likely	rises	gradually,	which	would	allow	an	

electron	to	move	a	bit	further	than	expected.	This	explains	the	positive	value	of	α;	L	is	probably	a	bit	

longer	than	(p	+	3)l.	Additionally,	even	if	there	were	infinite	potential	“walls”	beyond	either	side	of	each	

nitrogen,	quantum	tunneling	predicts	that	there	is	a	certain	probability	of	finding	an	electron	beyond	

those	walls.	Despite	the	huge	error	in	the	Gaussian	approximations	of	∆E,	figures	4	–	7	show	that	the	

lowest	energy	conformation	of	each	of	the	dye	molecules	studied	is	planar,	and	that	there	is	a	

“boundary”	(a	node)	just	beyond	each	nitrogen,	in	both	the	HOMO	and	LUMO	of	each	molecule.	We	

have	ignored	the	ethyl	groups	attached	to	nitrogen	in	each	molecule,	replacing	them	with	hydrogens.	In	

theory,	this	should	not	affect	the	energy	of	the	π	system,	but	because	of	the	planar	nature	of	the	π	

system	and	the	fact	that	the	carbon	twice	removed	from	nitrogen	should	be	able	to	move	freely,	there	is	

perhaps	a	chance	that	there	is	some	π	or	σ	interaction	from	this	carbon,	which	would	of	course	affect	

the	energy	of	the	π	system	and	make	it	deviate	from	the	conditions	of	the	“free	electron”	model.	

Calculations	would	have	to	be	repeated	with	Gaussian	with	these	ethyl	groups	added	in	order	to	see	

whether	or	not	they	affect	the	energy	of	the	HOMO	and	LUMO	(a	time-dependent	DFT	may	be	in	order,	

since	the	carbons	in	question	should	be	in	a	non-inertial	frame	relative	to	the	rest	of	the	molecule).	Also,	

while	eq.	13	may	seem	most	accurate,	it	is	still	an	artifice,	since	we	are	simply	using	a	variable	

parameter	to	“make	up”	for	the	lack	of	accuracy	in	the	assumptions	which	allowed	us	to	derive	it,	rather	



than	accounting	for	physical	factors	which	would	explain	this	lack	of	accuracy.	One	simple	correction,	to	

start	with,	would	be	to	recognize	that	the	potential	within	the	π	system	should	not	simply	be	zero,	but	

rather,	a	non-zero	constant	(or	a	potential	that	is	essentially	constant).	This	would	affect	the	application	

of	eq.	2	(the	non-relativistic	Schrödinger	equation),	and	thus,	would	result	in	different	eigenvalues	

(energies).	This	would	not	affect	∆𝐸.	But	if	instead,	a	non-zero	potential	(V(r))	were	present	in	the	π	

system,	then	eq.	5	would	instead	read	

	

𝐸< = 	
ℎ/𝑛/

8𝑚𝐿/
+	𝑉<(𝑟)	

and	eq.		9	would	read	

	 	 	 	 	 ∆𝐸 = (+

,#8+
𝑁 + 1 + 𝑉</ 𝑟 − 𝑉<? 𝑟 	 	

	

where	the	subscripts	n1	and	n2	represent	a	possible	dependence	of	V(r)	on	n.	Since	using	eq.	12	predicts	

a	shorter	wavelength	(higher	∆𝐸)	for	the	HOMO/LUMO	transition	in	every	dye	molecule,	if	V(r)	

depended	on	n,	there	would	be	a	greater	disparity	in	the	energy	of	the	HOMO	and	LUMO.	Explorations	

of	a	possible	function	for	𝑉< 𝑟 	should	be	explored	by	examining	the	discrepancy	between	experimental	

data	and	calculations	from	eq.	12.	
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